Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Science ; 383(6686): eabm9903, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422126

ABSTRACT

All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.


Subject(s)
Bacteria , Bacterial Infections , Cell Membrane , GTP-Binding Proteins , Innate Immunity Recognition , Humans , Cytokines/chemistry , Electron Microscope Tomography , GTP-Binding Proteins/chemistry , Guanosine Triphosphate/chemistry , Hydrolysis , Immunity, Cellular , Cryoelectron Microscopy , Gasdermins/chemistry , Phosphate-Binding Proteins/chemistry , Protein Conformation , Cell Membrane/chemistry , Cell Membrane/immunology , Caspases, Initiator/chemistry , Bacterial Infections/immunology , Bacteria/immunology
2.
Nature ; 619(7971): 819-827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438530

ABSTRACT

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Subject(s)
COVID-19 , Phospholipid Transfer Proteins , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chiroptera , COVID-19/immunology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Exome Sequencing , Hepatocytes/immunology , Hepatocytes/metabolism , Interferon-gamma/immunology , Lung/immunology , Lung/metabolism , Membrane Fusion , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/immunology , Phospholipid Transfer Proteins/metabolism , SARS-CoV-2/classification , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization
3.
EMBO J ; 42(13): e111867, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37203866

ABSTRACT

Tight regulation of Toll-like receptor (TLR)-mediated inflammatory responses is important for innate immunity. Here, we show that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the transcription factor FoxO1, regulating inflammatory mediator production in the lipopolysaccharide (LPS)-induced inflammatory response. TDAG51 induction by LPS stimulation was mediated by the TLR2/4 signaling pathway in bone marrow-derived macrophages (BMMs). LPS-induced inflammatory mediator production was significantly decreased in TDAG51-deficient BMMs. In TDAG51-deficient mice, LPS- or pathogenic Escherichia coli infection-induced lethal shock was reduced by decreasing serum proinflammatory cytokine levels. The recruitment of 14-3-3ζ to FoxO1 was competitively inhibited by the TDAG51-FoxO1 interaction, leading to blockade of FoxO1 cytoplasmic translocation and thereby strengthening FoxO1 nuclear accumulation. TDAG51/FoxO1 double-deficient BMMs showed significantly reduced inflammatory mediator production compared with TDAG51- or FoxO1-deficient BMMs. TDAG51/FoxO1 double deficiency protected mice against LPS- or pathogenic E. coli infection-induced lethal shock by weakening the systemic inflammatory response. Thus, these results indicate that TDAG51 acts as a regulator of the transcription factor FoxO1, leading to strengthened FoxO1 activity in the LPS-induced inflammatory response.


Subject(s)
Escherichia coli , Lipopolysaccharides , Mice , Animals , 14-3-3 Proteins , Transcription Factors/genetics , Inflammation Mediators
4.
Nat Commun ; 12(1): 2258, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859201

ABSTRACT

Selenoproteins containing selenium in the form of selenocysteine are critical for bone remodeling. However, their underlying mechanism of action is not fully understood. Herein, we report the identification of selenoprotein W (SELENOW) through large-scale mRNA profiling of receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation, as a protein that is downregulated via RANKL/RANK/tumour necrosis factor receptor-associated factor 6/p38 signaling. RNA-sequencing analysis revealed that SELENOW regulates osteoclastogenic genes. SELENOW overexpression enhances osteoclastogenesis in vitro via nuclear translocation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 mediated by 14-3-3γ, whereas its deficiency suppresses osteoclast formation. SELENOW-deficient and SELENOW-overexpressing mice exhibit high bone mass phenotype and osteoporosis, respectively. Ectopic SELENOW expression stimulates cell-cell fusion critical for osteoclast maturation as well as bone resorption. Thus, RANKL-dependent repression of SELENOW regulates osteoclast differentiation and blocks osteoporosis caused by overactive osteoclasts. These findings demonstrate a biological link between selenium and bone metabolism.


Subject(s)
Bone Remodeling/genetics , Osteoclasts/physiology , Osteogenesis/genetics , Osteoporosis/genetics , Selenoprotein W/metabolism , 14-3-3 Proteins/metabolism , Animals , Cell Differentiation/genetics , Disease Models, Animal , Gene Expression Regulation/physiology , Humans , Male , Mice , Mice, Knockout , NFATC Transcription Factors/metabolism , Osteoporosis/pathology , RANK Ligand/metabolism , RNA-Seq , Selenoprotein W/genetics , Signal Transduction/physiology , TNF Receptor-Associated Factor 6/metabolism
5.
Mol Cells ; 44(1): 1-12, 2021 01 31.
Article in English | MEDLINE | ID: mdl-33335079

ABSTRACT

The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.


Subject(s)
Adipogenesis , PPAR gamma/metabolism , Protein Multimerization , Retinoid X Receptor alpha/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transcription Factors/genetics , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cell Death , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Mice , Promoter Regions, Genetic/genetics , Protein Binding , Transcription Factors/metabolism
6.
Nat Immunol ; 21(8): 880-891, 2020 08.
Article in English | MEDLINE | ID: mdl-32541830

ABSTRACT

Bacterial lipopolysaccharide triggers human caspase-4 (murine caspase-11) to cleave gasdermin-D and induce pyroptotic cell death. How lipopolysaccharide sequestered in the membranes of cytosol-invading bacteria activates caspases remains unknown. Here we show that in interferon-γ-stimulated cells guanylate-binding proteins (GBPs) assemble on the surface of Gram-negative bacteria into polyvalent signaling platforms required for activation of caspase-4. Caspase-4 activation is hierarchically controlled by GBPs; GBP1 initiates platform assembly, GBP2 and GBP4 control caspase-4 recruitment, and GBP3 governs caspase-4 activation. In response to cytosol-invading bacteria, activation of caspase-4 through the GBP platform is essential to induce gasdermin-D-dependent pyroptosis and processing of interleukin-18, thereby destroying the replicative niche for intracellular bacteria and alerting neighboring cells, respectively. Caspase-11 and GBPs epistatically protect mice against lethal bacterial challenge. Multiple antagonists of the pathway encoded by Shigella flexneri, a cytosol-adapted bacterium, provide compelling evolutionary evidence for the importance of the GBP-caspase-4 pathway in antibacterial defense.


Subject(s)
Caspases, Initiator/immunology , GTP-Binding Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Inflammasomes/immunology , Signal Transduction/immunology , Animals , Gram-Negative Bacteria/immunology , HeLa Cells , Humans , Lipopolysaccharides/immunology , Mice , Pyroptosis/immunology
7.
PLoS Genet ; 15(6): e1008214, 2019 06.
Article in English | MEDLINE | ID: mdl-31251738

ABSTRACT

Postpartum depression is a severe emotional and mental disorder that involves maternal care defects and psychiatric illness. Postpartum depression is closely associated with a combination of physical changes and physiological stress during pregnancy or after parturition in stress-sensitive women. Although postpartum depression is relatively well known to have deleterious effects on the developing fetus, the influence of genetic risk factors on the development of postpartum depression remains unclear. In this study, we discovered a novel function of T cell death-associated gene 51 (TDAG51/PHLDA1) in the regulation of maternal and depressive-like behavior. After parturition, TDAG51-deficient dams showed impaired maternal behavior in pup retrieving, nursing and nest building tests. In contrast to the normal dams, the TDAG51-deficient dams also exhibited more sensitive depressive-like behaviors after parturition. Furthermore, changes in the expression levels of various maternal and depressive-like behavior-associated genes regulating neuroendocrine factor and monoamine neurotransmitter levels were observed in TDAG51-deficient postpartum brain tissues. These findings indicate that TDAG51 plays a protective role against maternal care defects and depressive-like behavior after parturition. Thus, TDAG51 is a maternal care-associated gene that functions as a crucial regulator of maternal and depressive-like behavior after parturition.


Subject(s)
Depressive Disorder/genetics , Maternal Behavior , Parturition/genetics , Transcription Factors/genetics , Animals , Brain/metabolism , Depressive Disorder/physiopathology , Female , Gene Expression Regulation/genetics , Humans , Mice , Mice, Knockout , Neurotransmitter Agents/genetics , Parturition/physiology , Pregnancy
8.
J Exp Med ; 216(3): 482-500, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30755454

ABSTRACT

Guanylate-binding proteins (GBPs) have recently emerged as central orchestrators of immunity to infection, inflammation, and neoplastic diseases. Within numerous host cell types, these IFN-induced GTPases assemble into large nanomachines that execute distinct host defense activities against a wide variety of microbial pathogens. In addition, GBPs customize inflammasome responses to bacterial infection and sepsis, where they act as critical rheostats to amplify innate immunity and regulate tissue damage. Similar functions are becoming evident for metabolic inflammatory syndromes and cancer, further underscoring the importance of GBPs within infectious as well as altered homeostatic settings. A better understanding of the basic biology of these IFN-induced GTPases could thus benefit clinical approaches to a wide spectrum of important human diseases.


Subject(s)
GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Host-Parasite Interactions/immunology , Host-Pathogen Interactions/immunology , Interferons/metabolism , Animals , Colitis/immunology , Colitis/metabolism , GTP-Binding Proteins/immunology , Humans , Inflammasomes/physiology , Inflammation/immunology , Inflammation/metabolism , Vertebrates
9.
Virus Res ; 227: 150-157, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27732876

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) infects swine intestinal cells causing enteric disease. Research has shown that the entry into these cells is through porcine aminopeptidase N (pAPN) receptor. To gain insights into mechanisms of PEDV-pAPN interactions, the present study aimed at identifying the domain that is critical for PEDV binding. To this end, NIH3T3 cell lines constitutively expressing pAPN or pAPN mutants were generated. The mutants were; domain VII deletion mutant and domains IV-VI deletion mutant. In the latter, domain VII was linked to the transmembrane segment through domain III. Results showed PEDV infection was restricted to pAPN and pAPN domain VII expressing NIH3T3 cells. Further, reducing PEDV titre 10 fold resulted in 37.8% decrease in foci indicating positive correlation. A time course test at 12, 24, 36, 48 and 60h showed that foci increased 6 fold in the overall time range. Also, PEDV harvested from pAPN or domain VII expressing NIH3T3 cells was induced indirect plaques in Vero cells confirming successful entry and replication. Collectively, our results demonstrate that PEDV recognizes pAPN and that the main interactive point is lodged within domain VII of the pAPN. These findings are important for therapeutic development as well as creating a platform for future studies on PEDV.


Subject(s)
CD13 Antigens/metabolism , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/physiology , Protein Domains , Swine Diseases/metabolism , Swine Diseases/virology , Virus Attachment , Virus Internalization , Animals , CD13 Antigens/chemistry , CD13 Antigens/genetics , Gene Expression , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Swine , Virus Replication
10.
J Biol Chem ; 291(39): 20643-60, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27507811

ABSTRACT

The signaling pathway downstream of stimulation of receptor activator of nuclear factor κB (RANK) by RANK ligand is crucial for osteoclastogenesis. RANK recruits TNF receptor-associated factor 6 (TRAF6) to TRAF6-binding sites (T6BSs) in the RANK cytoplasmic tail (RANKcyto) to trigger downstream osteoclastogenic signaling cascades. RANKcyto harbors an additional highly conserved domain (HCR) that also activates crucial signaling during RANK-mediated osteoclastogenesis. However, the functional cross-talk between T6BSs and the HCR in the RANK signaling complex remains unclear. To characterize the cross-talk between T6BSs and the HCR, we screened TRAF6-interacting proteins using a proteomics approach. We identified Vav3 as a novel TRAF6 binding partner and evaluated the functional importance of the TRAF6-Vav3 interaction in the RANK signaling complex. We demonstrated that the coiled-coil domain of TRAF6 interacts directly with the Dbl homology domain of Vav3 to form the RANK signaling complex independent of the TRAF6 ubiquitination pathway. TRAF6 is recruited to the RANKcyto mutant, which lacks T6BSs, via the Vav3 interaction; conversely, Vav3 is recruited to the RANKcyto mutant, which lacks the IVVY motif, via the TRAF6 interaction. Finally, we determined that the TRAF6-Vav3 interaction resulting from cross-talk between T6BSs and the IVVY motif in RANKcyto enhances downstream NF-κB, MAPK, and NFATc1 activation by further strengthening TRAF6 signaling, thereby inducing RANK-mediated osteoclastogenesis. Thus, Vav3 is a novel TRAF6 interaction partner that functions in the activation of cooperative signaling between T6BSs and the IVVY motif in the RANK signaling complex.


Subject(s)
MAP Kinase Signaling System/physiology , Multiprotein Complexes/metabolism , Osteoclasts/metabolism , Proto-Oncogene Proteins c-vav/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , TNF Receptor-Associated Factor 6/metabolism , Amino Acid Motifs , Cell Line , Humans , Intracellular Signaling Peptides and Proteins , Multiprotein Complexes/genetics , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Proto-Oncogene Proteins c-vav/genetics , Receptor Activator of Nuclear Factor-kappa B/genetics , TNF Receptor-Associated Factor 6/genetics , Ubiquitination/physiology
11.
Nat Immunol ; 17(5): 481-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27092805

ABSTRACT

Traditional views of the inflammasome highlight the assembly of pre-existing core components shortly after infection or tissue damage. Emerging work, however, suggests that the inflammasome machinery is also subject to 'tunable' or inducible signals that might accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these signals operate downstream of interferon receptors to elicit inflammasome regulators, including a new family of interferon-induced GTPases called 'guanylate-binding proteins' (GBPs). Here we investigate the critical roles of interferon-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity to a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential effect of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases.


Subject(s)
GTP-Binding Proteins/immunology , Inflammasomes/immunology , Interferons/immunology , Signal Transduction/immunology , Animals , Disease Resistance/genetics , Disease Resistance/immunology , GTP-Binding Proteins/classification , GTP-Binding Proteins/genetics , Host-Pathogen Interactions/immunology , Humans , Infections/immunology , Infections/microbiology , Infections/parasitology , Inflammasomes/genetics , Inflammasomes/metabolism , Interferons/metabolism , Listeria monocytogenes/immunology , Listeria monocytogenes/physiology , Mice , Models, Immunological , Phylogeny , Signal Transduction/genetics , Toxoplasma/immunology , Toxoplasma/physiology
12.
J Biol Chem ; 290(15): 9660-73, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25716317

ABSTRACT

The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.


Subject(s)
Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , TNF Receptor-Associated Factor 2/metabolism , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Ubiquitin/metabolism , Binding Sites/genetics , Cytokines/genetics , Cytokines/metabolism , Gene Expression , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Lysine/genetics , Lysine/metabolism , NF-kappa B/metabolism , Protein Binding , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Sphingosine/metabolism , TNF Receptor-Associated Factor 2/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitination
13.
Virus Res ; 197: 108-15, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25550073

ABSTRACT

Porcine coronavirus infections have known as they are specific to pigs with predominantly enteric or respiratory diseases. No laboratory animal model is yet been developed in porcine coronaviruses study. Here, we report that development of a transgenic mouse model expressing porcine APN which is susceptible to porcine coronavirus infection. The porcine APN transgene was constructed by fusing with mouse proximal APN promoter at 5' terminus and bovine growth hormone polyadenylation site at its 3' terminus. After screen on pubs from the microinjected mice, we confirmed two transgenic lines expressing porcine APN in various organs. We confirmed the susceptibility to porcine epidemic diarrhea virus, one of the porcine coronaviruses. These transgenic mice will be an important tool for research into the porcine coronaviruses.


Subject(s)
CD13 Antigens/metabolism , Coronavirus Infections/pathology , Disease Models, Animal , Porcine epidemic diarrhea virus/physiology , Receptors, Virus/metabolism , Animals , CD13 Antigens/genetics , Coronavirus Infections/virology , Mice, Transgenic , Receptors, Virus/genetics , Swine
14.
J Biol Chem ; 289(52): 35868-81, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25359771

ABSTRACT

Genetic mutations in osteoclastogenic genes are closely associated with osteopetrotic bone diseases. Genetic defects in OSTM1 (osteopetrosis-associated transmembrane protein 1) cause autosomal recessive osteopetrosis in humans. In particular, OSTM1 mutations that exclude the transmembrane domain might lead to the production of a secreted form of truncated OSTM1. However, the precise role of the secreted form of truncated OSTM1 remains unknown. In this study, we analyzed the functional role of truncated OSTM1 in osteoclastogenesis. Here, we showed that a secreted form of truncated OSTM1 binds to the cell surface of osteoclast (OC) precursors and inhibits the formation of multinucleated OCs through the reduction of cell fusion and survival. Truncated OSTM1 significantly inhibited the expression of OC marker genes through the down-regulation of the BLIMP1 (B lymphocyte-induced maturation protein 1)-NFATc1 (nuclear factor of activated T cells c1) axis. Finally, we demonstrated that truncated OSTM1 reduces lipopolysaccharide-induced bone destruction in vivo. Thus, these findings suggest that autosomal recessive osteopetrosis patients with an OSTM1 gene mutation lacking the transmembrane domain produce a secreted form of truncated OSTM1 that inhibits osteoclastogenesis.


Subject(s)
Membrane Proteins/metabolism , NFATC Transcription Factors/metabolism , Osteoclasts/physiology , Transcription Factors/metabolism , Animals , Bone Resorption/immunology , Bone Resorption/metabolism , Cell Differentiation , Cell Fusion , Cell Survival , Cells, Cultured , Down-Regulation , Gene Expression , Lipopolysaccharides/pharmacology , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Osteoclasts/immunology , Osteoporosis/immunology , Osteoporosis/metabolism , Positive Regulatory Domain I-Binding Factor 1 , Signal Transduction
15.
Exp Mol Med ; 45: e35, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23928855

ABSTRACT

Apoptosis has an important role in maintaining tissue homeostasis in cellular stress responses such as inflammation, endoplasmic reticulum stress, and oxidative stress. T-cell death-associated gene 51 (TDAG51) is a member of the pleckstrin homology-like domain family and was first identified as a pro-apoptotic gene in T-cell receptor-mediated cell death. However, its pro-apoptotic function remains controversial. In this study, we investigated the role of TDAG51 in oxidative stress-induced apoptotic cell death in mouse embryonic fibroblasts (MEFs). TDAG51 expression was highly increased by oxidative stress responses. In response to oxidative stress, the production of intracellular reactive oxygen species was significantly enhanced in TDAG51-deficient MEFs, resulting in the activation of caspase-3. Thus, TDAG51 deficiency promotes apoptotic cell death in MEFs, and these results indicate that TDAG51 has a protective role in oxidative stress-induced cell death in MEFs.


Subject(s)
Apoptosis , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Transcription Factors/deficiency , Animals , Fibroblasts/enzymology , Fibroblasts/pathology , Gene Expression Regulation , Intracellular Space/metabolism , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Oxidative Stress/genetics , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
16.
J Clin Immunol ; 32(6): 1360-71, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22711011

ABSTRACT

PURPOSE: Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation. METHODS: To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1). RESULTS: We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1. CONCLUSIONS: We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.


Subject(s)
Down-Regulation/drug effects , Gene Expression/drug effects , Giant Cells/drug effects , Inositol/pharmacology , NFATC Transcription Factors/genetics , Osteoclasts/drug effects , RANK Ligand/genetics , Animals , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Fusion , Cell Line , Dose-Response Relationship, Drug , Giant Cells/pathology , Humans , Inositol/analogs & derivatives , Mice , NFATC Transcription Factors/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , RANK Ligand/metabolism , Stereoisomerism
17.
Biochem Biophys Res Commun ; 403(1): 73-8, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21040703

ABSTRACT

Bone homeostasis is maintained through the balanced action of bone-forming osteoblasts and bone-resorbing osteoclasts. Under pathological conditions or with age, excessive bone loss is often observed due to increased bone resorption. Since osteoclasts are the primary cells in the body that can resorb bone, molecular understanding of osteoclast fate has important clinical implications. Over the past 20 years, many molecular players that govern osteoclast differentiation during normal development have been identified. However, whether the same molecules regulate bone loss occurring under pathological conditions remains largely unknown. We report here that although ATP6v0d2-deficient (ATP6v0d2 KO) mice exhibit an osteopetrotic phenotype due to inefficient osteoclast maturation, this deficiency fails to protect mice from ovariectomy (OVX)-induced bone loss, a model for post-menopause-associated osteoporosis. Moreover, we show that an OVX-induced increase in the number of colony forming unit-granulocyte/macrophage (CFU-GM) in bone marrow cells and subsequent osteoclast formation in vitro was not affected in the absence of ATP6v0d2. However, even after OVX, formation of large osteoclasts (>100 µm in diameter) with actin rings was still reduced in the absence of ATP6v0d2. Taken together, these findings suggest that the critical role of ATP6v0d2 may be limited to the control of bone homeostasis under normal development, and that OVX-induced bone loss is likely to be governed mostly by the increase in osteoclast precursors rather than increased efficiency of osteoclast maturation.


Subject(s)
Bone Density , Bone and Bones/cytology , Cell Differentiation , Vacuolar Proton-Translocating ATPases/physiology , Animals , Mice , Mice, Knockout , Osteoclasts/cytology , Osteoporosis/metabolism , Osteoporosis/pathology , Vacuolar Proton-Translocating ATPases/genetics
18.
Biochem Biophys Res Commun ; 391(1): 322-8, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19913501

ABSTRACT

Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.


Subject(s)
Immediate-Early Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Simplexvirus/physiology , Virus Replication , Amino Acid Sequence , Amino Acid Substitution , Arginine/genetics , Arginine/metabolism , Cell Line , Cell Nucleus/virology , Enzyme Inhibitors/pharmacology , Humans , Immediate-Early Proteins/genetics , Methylation , Mutation , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Simplexvirus/genetics
19.
Biochem Biophys Res Commun ; 369(2): 320-6, 2008 May 02.
Article in English | MEDLINE | ID: mdl-18269914

ABSTRACT

Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functional roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na(+)/H(+) exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-kappaB ligand signaling and is required for OC differentiation and survival.


Subject(s)
Osteoblasts/cytology , Osteoblasts/physiology , Osteoclasts/cytology , Osteoclasts/physiology , Osteogenesis/physiology , Sodium-Hydrogen Exchangers/metabolism , Animals , Cell Differentiation , Cell Survival , Cells, Cultured , Mice
20.
Biochem Biophys Res Commun ; 363(4): 971-7, 2007 Nov 30.
Article in English | MEDLINE | ID: mdl-17927961

ABSTRACT

Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are key adaptor molecules in the TNFR-signaling complexes that promote a wide variety of signaling cascades including cell proliferation, activation, differentiation, and apoptosis. TRAF-interacting protein (TRIP) is required for the inhibitory regulation of TNF-induced NF-kappaB signaling via the TNFR/TRAF-signaling complexes in vitro. TRIP also directly interacts with the familial cylindromatosis tumor suppressor gene (CYLD) and negatively regulates NF-kappaB activation in vitro. However, although there appears to be a relationship between TRIP, the TRAFs and also CYLD as modulators of NF-kappaB signaling in vitro, the functional role of TRIP in vivo is still unclear. To identify the role of TRIP in vivo, we have generated TRIP-deficient mice. Homozygous mouse embryos were found to die shortly after implantation due to proliferation defects and excessive cell death. These results indicate that TRIP is an essential factor during early mouse embryonic development in vivo.


Subject(s)
Embryo Loss/metabolism , Gene Deletion , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/deficiency , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Animals , Cell Proliferation , Down-Regulation/drug effects , Embryo Loss/genetics , Embryo Loss/pathology , Female , Genotype , Mice , Mice, Knockout , NIH 3T3 Cells , Pregnancy , RNA, Small Interfering/genetics , Time Factors , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...